
ramonh.dev

Ramón Huidobro

ramonh.dev

WebAssembly
💜

React



Containers? 🙋



WebAssembly? 🙋



I’m Ramón. (he/him) 
From 󰎧, living in 󰎈
Co-Founder: BadWebsite.Club

DevRel Strategy Consultant

egghead Instructor

Community member

Mozilla tech speaker alum

Kids’ coding coach

Coding live streamer



What is WebAssembly 
(Wasm)?



https://webassembly.org/



Wasm is not a 
programming 

language



Wasm is not a 
programming 

language



Wasm is a standard 
for low-level 

bytecode



Wasm is a 
compilation target 





https://archive.org/details/msdos_Prince_of_Persia_1990



https://squoosh.app/



https://stackblitz.com



https://lab.allotropia.de/wasm/



Ok but that’s all on the 
browser side. 

What’s this about 
server-side Wasm? 

Surely Wasm can’t just run 
anywhere…



That’s where WASI comes in.
WebAssembly,
now with a
System Interface!



https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/



WASI is analogous to 
these system calls



It is not an OS 
replacement



It's an API designed by the Wasmtime project 
that provides access to several 
operating-system-like features, including files 
and filesystems, Berkeley sockets, clocks, and 
random numbers...

https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-intro.md

https://github.com/bytecodealliance/wasmtime


https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/



https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/



https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/



https://docs.wasmtime.dev/



https://wapm.io/vshymanskyy/wasm3



https://wazero.io/



https://github.com/paritytech/wasmi



https://wasmer.io/



https://wasi.dev/polyfill/



https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/



https://wasmedge.org/



Or even… in a container 
🤯



Further Reading/Watching

● https://developer.mozilla.org/en-US/docs/WebAssembly
● https://hacks.mozilla.org/2017/02/a-cartoon-intro-to-webassembly/
● https://github.com/bytecodealliance/wasmtime/blob/main/docs/WA

SI-overview.md
● https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly

-system-interface/

https://developer.mozilla.org/en-US/docs/WebAssembly
https://hacks.mozilla.org/2017/02/a-cartoon-intro-to-webassembly/
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-overview.md
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/


Why run Wasm on the 
server?



https://twitter.com/solomonstre/status/1111004913222324225



It’s designed with 
capability-based security!



It’s polyglot by nature!



Modules are typed, small, 
provisionable!



It’s got the speed!



https://www.youtube.com/watch?v=phodPLY8zNE



https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/





Code attaches to system 
resources at startup.



Code attaches to system 
resources at startup.



But what does that mean 
for the industry?



We can write code 
without worrying about

Server Setup



We can write code 
without worrying about

Startup/Shutdown times



We can write code 
without worrying about

Scaling



We can write code 
without worrying about

Common Security Vectors



Further Reading/Watching

● https://www.secondstate.io/articles/why-webassembly-server/
● https://wasmedge.org/book/en/use_cases/server_side_render.html
● https://www.wasm.builders/thomastaylor312/why-webassembly-belo

ngs-outside-the-browser-331a

https://www.secondstate.io/articles/why-webassembly-server/
https://wasmedge.org/book/en/use_cases/server_side_render.html
https://www.wasm.builders/thomastaylor312/why-webassembly-belongs-outside-the-browser-331a
https://www.wasm.builders/thomastaylor312/why-webassembly-belongs-outside-the-browser-331a


Is Wasm production-ready?



Functions-as-a-Service (Faas)



Edge Computing / Microservices



Extensibility



Blockchain



Embedded



https://docs.flightsimulator.com/html/Programming_Tools/WASM/WebAssembly.htm



Further Reading/Watching

● https://shopify.engineering/shopify-webassembly
● https://blog.suborbital.dev/webassembly-extensibility-today-and-tom

orrow
● https://www.wasm.builders/aryank21/why-wasm-is-the-perfect-runti

me-for-server-side-applications-1b9p

https://shopify.engineering/shopify-webassembly
https://blog.suborbital.dev/webassembly-extensibility-today-and-tomorrow
https://blog.suborbital.dev/webassembly-extensibility-today-and-tomorrow


But wait there’s more:
- Component model



But wait there’s more:
- Component model

- wasi-nn



But wait there’s more:
- Component model

- wasi-nn
- Garbage Collection



But wait there’s more:
- Component model

- wasi-nn
- Garbage Collection
- Multi-threading



Who wants 
Docker+Wasm? 🙋



https://twitter.com/solomonstre/status/1111113329647325185



https://docs.docker.com/desktop/wasm/



https://www.docker.com/blog/docker-wasm-technical-preview/



A lot of this is new and 
WIP…

But the future is very 
bright!



Hold on.



Hold on.

Where does React come 
in?



Hold on.

Where does React come 
in?













Of course, this is running 
in the browser, what 
about server-side?



It’s a server, an 
implementation detail!



https://ramonh.dev/react-wasm.pdf



ramonh.dev

Ramón Huidobro

ramonh.dev/card

Thank you,
Friends!


